AP過去問 令和6年度春期 午前 問38

提供:yonewiki
2025年1月5日 (日) 18:20時点におけるYo-net (トーク | 投稿記録)による版
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)

AP過去問 令和6年度春期 午前 問題に戻る

AP過去問 令和6年度春期 午前 問37前の問題へ

AP過去問 令和6年度春期 午前 問39次の問題へ

 

問38(問題文)

 公開鍵暗号方式を使った暗号通信をn人が相互に行う場合、全体で何個の異なる鍵が必要になるか。ここで、一組の公開鍵と秘密鍵は2個と数える。


ア \( n + 1 \)

イ \( 2n \)

ウ \( \frac{n (n - 1)}{2} \)

エ \( \log 2n \)

 

回答・解説

 


AP過去問 令和6年度春期 午前 問37前の問題へ

AP過去問 令和6年度春期 午前 問39次の問題へ

AP過去問 令和6年度春期 午前 問題に戻る