「Mathjax2.x 開発」の版間の差分
(→数) |
編集の要約なし |
||
(同じ利用者による、間の25版が非表示) | |||
22行目: | 22行目: | ||
extensions: ["[Contrib]/physics/physics.js","[Contrib]/siunitx/siunitx.js", "color.js", "cancel.js"] | extensions: ["[Contrib]/physics/physics.js","[Contrib]/siunitx/siunitx.js", "color.js", "cancel.js"] | ||
}, | }, | ||
"HTML-CSS": { | |||
availableFonts: [], | |||
preferredFont: null, | |||
webFont: "STIX-Web" | |||
}, | |||
// "HTML-CSS": { | |||
// undefinedFamily: "'Neo Euler Medium', Meiryo, STIXGeneral, 'Arial Unicode MS', serif", | |||
// webFont :"Neo Euler Medium" | |||
// } | |||
} | } | ||
);</script> | );</script> | ||
57行目: | 62行目: | ||
if(MathJax.version) { | if(MathJax.version) { | ||
// MathJax のバージョンを取得して表示 | // MathJax のバージョンを取得して表示 | ||
document.getElementById("version").textContent = "MathJax | document.getElementById("version").textContent = "MathJax version: " + MathJax.version; | ||
} | } | ||
} else { | } else { | ||
69行目: | 74行目: | ||
== | 1.二次方程式の解の公式 | ||
<syntaxhighlight lang="tex"> | |||
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ | |||
</syntaxhighlight> | |||
<yjavascript></script> | |||
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ | |||
<script></yjavascript> | |||
2.積分の例 | |||
<syntaxhighlight lang="tex"> | |||
$$\int_{0}^{1} x^2 \, dx = \frac{1}{3}$$ | |||
</syntaxhighlight> | |||
$$\int_{0}^{1} x^2 \, dx = \frac{1}{3}$$ | |||
3.行列の掛け算 | |||
<syntaxhighlight lang="tex"> | |||
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}, A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$ | |||
</syntaxhighlight> | |||
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}, A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$ | |||
4.複素数の計算 | |||
<syntaxhighlight lang="tex"> | |||
$$z = 3 + 4i, |z| = \sqrt{3^2 + 4^2} = 5$$ | |||
</syntaxhighlight> | |||
$$z = 3 + 4i, |z| = \sqrt{3^2 + 4^2} = 5$$ | |||
5.ピタゴラスの定理 | |||
<syntaxhighlight lang="tex"> | |||
$$a^2 + b^2 = c^2$$ | |||
</syntaxhighlight> | |||
$$a^2 + b^2 = c^2$$ | |||
6.シュレディンガー方程式 | |||
<syntaxhighlight lang="tex"> | |||
$$i \hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$$ | |||
</syntaxhighlight> | |||
$$i \hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$$ | |||
7.ベクトルの内積 | |||
<syntaxhighlight lang="tex"> | |||
$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$ | |||
</syntaxhighlight> | |||
$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$ | |||
8.ローレンツ変換 | |||
<syntaxhighlight lang="tex"> | |||
$$ x^{\prime} = \gamma (x - vt), \phantom{0} t^{\prime} = \gamma ( t - \frac{vx}{c^2} ) $$ | |||
</syntaxhighlight> | |||
$$ x^{\prime} = \gamma (x - vt), \phantom{0} t^{\prime} = \gamma ( t - \frac{vx}{c^2} ) $$ | |||
9.二項定理 | |||
<syntaxhighlight lang="tex"> | |||
$$ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k $$ | |||
</syntaxhighlight> | |||
$$ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k $$ | |||
10.解析関数のコーシー・リーマン方程式 | |||
<syntaxhighlight lang="tex"> | |||
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$ | |||
</syntaxhighlight> | |||
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$ | |||
11.正弦関数の定義 | |||
<syntaxhighlight lang="tex"> | |||
$$\sin(\theta) = \frac{\text{対辺}}{\text{斜辺}}$$ | |||
</syntaxhighlight> | |||
$$\sin(\theta) = \frac{\text{対辺}}{\text{斜辺}}$$ | |||
12.余弦定理 | |||
<syntaxhighlight lang="tex"> | |||
$$c^2 = a^2 + b^2 - 2ab \cos(C)$$ | |||
</syntaxhighlight> | |||
$$c^2 = a^2 + b^2 - 2ab \cos(C)$$ | |||
13.三重角の公式(正弦) | |||
<syntaxhighlight lang="tex"> | |||
$$\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)$$ | |||
</syntaxhighlight> | |||
$$\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)$$ | |||
=== 線 === | |||
*分数 | *分数 | ||
<div | |||
$$ \frac{x}{y} $$ | |||
</div> | *下線 | ||
<div width="100%" align="center><span class="mrow" id="MathJax-Span-2"><span class="munderover" id="MathJax-Span-3"><span style="display: inline-block; position: relative; width: 6.087em; height: 0px;"><span style="position: absolute; clip: rect(1.127em, 1006.09em, 2.457em, -999.997em); top: -2.094em; left: 0em;"><span class="mtext" id="MathJax-Span-4"><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">a</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;"> </span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">l</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">o</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">n</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">g</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;"> </span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">l</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">o</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">n</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">g</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;"> </span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">a</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">g</span><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">o</span></span><span style="display: inline-block; width: 0px; height: 2.099em;"></span></span><span style="position: absolute;clip: rect(1.127em, 1000.36em, 2.457em, -999.997em);top: -1.918em;left: 0em;"><span class="mo" id="MathJax-Span-5"><span style="font-family: "Neo Euler Medium", Meiryo, STIXGeneral, "Arial Unicode MS", serif; font-size: 79%; font-style: normal; font-weight: normal;">_________________</span></span><span style="display: inline-block; width: 0px; height: 2.099em;"></span></span></span></span></span></div> |
2025年1月25日 (土) 16:59時点における最新版
Mathjax 2.7に戻る。
概要
Mathjax2.x系で使えるコード一覧を作成したいと思います。しばらくはコード動作確認調整期間になります。Mathjax3.x系向けのサンプルを全部貼りましたので、動いていないものは非対応だったんだなと思っていいと思います。
Version2.0系に関する記事です。現在の2.0系最新バージョンは
1.二次方程式の解の公式
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
2.積分の例
$$\int_{0}^{1} x^2 \, dx = \frac{1}{3}$$
$$\int_{0}^{1} x^2 \, dx = \frac{1}{3}$$
3.行列の掛け算
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}, A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}, A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$
4.複素数の計算
$$z = 3 + 4i, |z| = \sqrt{3^2 + 4^2} = 5$$
$$z = 3 + 4i, |z| = \sqrt{3^2 + 4^2} = 5$$
5.ピタゴラスの定理
$$a^2 + b^2 = c^2$$
$$a^2 + b^2 = c^2$$
6.シュレディンガー方程式
$$i \hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$$
$$i \hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$$
7.ベクトルの内積
$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$
$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$
8.ローレンツ変換
$$ x^{\prime} = \gamma (x - vt), \phantom{0} t^{\prime} = \gamma ( t - \frac{vx}{c^2} ) $$
$$ x^{\prime} = \gamma (x - vt), \phantom{0} t^{\prime} = \gamma ( t - \frac{vx}{c^2} ) $$
9.二項定理
$$ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k $$
$$ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k $$
10.解析関数のコーシー・リーマン方程式
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
11.正弦関数の定義
$$\sin(\theta) = \frac{\text{対辺}}{\text{斜辺}}$$
$$\sin(\theta) = \frac{\text{対辺}}{\text{斜辺}}$$
12.余弦定理
$$c^2 = a^2 + b^2 - 2ab \cos(C)$$
$$c^2 = a^2 + b^2 - 2ab \cos(C)$$
13.三重角の公式(正弦)
$$\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)$$
$$\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)$$
線
- 分数
$$ \frac{x}{y} $$
- 下線