「Mathjax2.x 開発」の版間の差分

提供:yonewiki
編集の要約なし
 
(同じ利用者による、間の26版が非表示)
22行目: 22行目:
         extensions: ["[Contrib]/physics/physics.js","[Contrib]/siunitx/siunitx.js", "color.js", "cancel.js"]
         extensions: ["[Contrib]/physics/physics.js","[Contrib]/siunitx/siunitx.js", "color.js", "cancel.js"]
       },
       },
      "HTML-CSS": {
  "HTML-CSS": {
        undefinedFamily: "'Neo Euler Medium', Meiryo, STIXGeneral, 'Arial Unicode MS', serif",
    availableFonts: [],
        webFont :"Neo Euler Medium"
    preferredFont: null,
      }
    webFont: "STIX-Web"
  },
//      "HTML-CSS": {
//        undefinedFamily: "'Neo Euler Medium', Meiryo, STIXGeneral, 'Arial Unicode MS', serif",
//        webFont :"Neo Euler Medium"
//      }
     }
     }
   );</script>
   );</script>
57行目: 62行目:
     if(MathJax.version) {
     if(MathJax.version) {
     // MathJax のバージョンを取得して表示
     // MathJax のバージョンを取得して表示
       document.getElementById("version").textContent = "MathJax &amp;@@&amp; version: " + MathJax.version;
       document.getElementById("version").textContent = "MathJax version: " + MathJax.version;
     }
     }
   } else {
   } else {
69行目: 74行目:
 
 


=== 数 ===
1.二次方程式の解の公式
<syntaxhighlight lang="tex">
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
</syntaxhighlight>


<yjavascript></script>
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
<script></yjavascript>
2.積分の例
<syntaxhighlight lang="tex">
$$\int_{0}^{1} x^2 \, dx = \frac{1}{3}$$
</syntaxhighlight>
$$\int_{0}^{1} x^2 \, dx = \frac{1}{3}$$
3.行列の掛け算
<syntaxhighlight lang="tex">
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}, A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$
</syntaxhighlight>
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}, A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$
4.複素数の計算
<syntaxhighlight lang="tex">
$$z = 3 + 4i, |z| = \sqrt{3^2 + 4^2} = 5$$
</syntaxhighlight>
$$z = 3 + 4i, |z| = \sqrt{3^2 + 4^2} = 5$$
5.ピタゴラスの定理
<syntaxhighlight lang="tex">
$$a^2 + b^2 = c^2$$
</syntaxhighlight>
$$a^2 + b^2 = c^2$$
6.シュレディンガー方程式
<syntaxhighlight lang="tex">
$$i \hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$$
</syntaxhighlight>
$$i \hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$$
7.ベクトルの内積
<syntaxhighlight lang="tex">
$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$
</syntaxhighlight>
$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$
8.ローレンツ変換
<syntaxhighlight lang="tex">
$$ x^{\prime} = \gamma (x - vt), \phantom{0} t^{\prime} = \gamma ( t - \frac{vx}{c^2} ) $$
</syntaxhighlight>
$$ x^{\prime} = \gamma (x - vt), \phantom{0} t^{\prime} = \gamma ( t - \frac{vx}{c^2} ) $$
9.二項定理
<syntaxhighlight lang="tex">
$$ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k $$
</syntaxhighlight>
$$ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k $$
10.解析関数のコーシー・リーマン方程式
<syntaxhighlight lang="tex">
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
</syntaxhighlight>
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
11.正弦関数の定義
<syntaxhighlight lang="tex">
$$\sin(\theta) = \frac{\text{対辺}}{\text{斜辺}}$$
</syntaxhighlight>
$$\sin(\theta) = \frac{\text{対辺}}{\text{斜辺}}$$
12.余弦定理
<syntaxhighlight lang="tex">
$$c^2 = a^2 + b^2 - 2ab \cos(C)$$
</syntaxhighlight>
$$c^2 = a^2 + b^2 - 2ab \cos(C)$$
13.三重角の公式(正弦)
<syntaxhighlight lang="tex">
$$\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)$$
</syntaxhighlight>
$$\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)$$
=== 線 ===
*分数
*分数
<div style="background-color:#eeeeee; border:2px solid;">
 
<p><span class="MathJax_Preview" style="color: inherit;"></span><div class="MathJax_Display" style="text-align: center;"><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" data-mathml="<math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;block&quot;><munder><mtext>a long long ago</mtext><mo>&amp;#x005F;</mo></munder></math>" role="presentation" style="text-align: center; position: relative;"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-1" style="width: 7.57em; display: inline-block;"><span style="display: inline-block; position: relative; width: 5.934em; height: 0px; font-size: 127%;"><span style="position: absolute; clip: rect(1.127em, 1005.93em, 3.633em, -999.997em); top: -2.094em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="munderover" id="MathJax-Span-3"><span style="display: inline-block; position: relative; width: 5.934em; height: 0px;"><span style="position: absolute; clip: rect(1.281em, 1005.93em, 2.61em, -999.997em); top: -2.247em; left: 0em;"><span class="mtext" id="MathJax-Span-4"><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">a</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;"> </span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">l</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">o</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">n</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">g</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;"> </span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">l</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">o</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">n</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">g</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;"> </span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">a</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">g</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">o</span></span><span style="display: inline-block; width: 0px; height: 2.252em;"></span></span><span style="position: absolute;clip: rect(1.281em, 1000.51em, 2.61em, -999.997em);top: -1.871em;left: 0em;"><span class="mo" id="MathJax-Span-5"><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif;font-size: 79%;font-style: normal;font-weight: normal;">_________________</span></span><span style="display: inline-block; width: 0px; height: 2.252em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.099em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -1.815em; border-left: 0px solid; width: 0px; height: 2.925em;"></span></span></nobr><span class="MJX_Assistive_MathML MJX_Assistive_MathML_Block" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><munder><mtext>a long long ago</mtext><mo>_</mo></munder></math></span></span></div>
$$ \frac{x}{y} $$
</p>
 
</div>
*下線
<div width="100%" align="center><span class="mrow" id="MathJax-Span-2"><span class="munderover" id="MathJax-Span-3"><span style="display: inline-block; position: relative; width: 6.087em; height: 0px;"><span style="position: absolute; clip: rect(1.127em, 1006.09em, 2.457em, -999.997em); top: -2.094em; left: 0em;"><span class="mtext" id="MathJax-Span-4"><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">a</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;"> </span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">l</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">o</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">n</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">g</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;"> </span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">l</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">o</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">n</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">g</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;"> </span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">a</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">g</span><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">o</span></span><span style="display: inline-block; width: 0px; height: 2.099em;"></span></span><span style="position: absolute;clip: rect(1.127em, 1000.36em, 2.457em, -999.997em);top: -1.918em;left: 0em;"><span class="mo" id="MathJax-Span-5"><span style="font-family: &quot;Neo Euler Medium&quot;, Meiryo, STIXGeneral, &quot;Arial Unicode MS&quot;, serif; font-size: 79%; font-style: normal; font-weight: normal;">_________________</span></span><span style="display: inline-block; width: 0px; height: 2.099em;"></span></span></span></span></span></div>

2025年1月25日 (土) 16:59時点における最新版

Mathjax 2.7に戻る。

概要

 Mathjax2.x系で使えるコード一覧を作成したいと思います。しばらくはコード動作確認調整期間になります。Mathjax3.x系向けのサンプルを全部貼りましたので、動いていないものは非対応だったんだなと思っていいと思います。


 

Checking environment...

 Version2.0系に関する記事です。現在の2.0系最新バージョンは

 

Loading MathJax version...

 

1.二次方程式の解の公式

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

2.積分の例

$$\int_{0}^{1} x^2 \, dx = \frac{1}{3}$$

$$\int_{0}^{1} x^2 \, dx = \frac{1}{3}$$


3.行列の掛け算

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}, A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}, A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$


4.複素数の計算

$$z = 3 + 4i, |z| = \sqrt{3^2 + 4^2} = 5$$

$$z = 3 + 4i, |z| = \sqrt{3^2 + 4^2} = 5$$


5.ピタゴラスの定理

$$a^2 + b^2 = c^2$$

$$a^2 + b^2 = c^2$$


6.シュレディンガー方程式

$$i \hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$$

$$i \hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$$


7.ベクトルの内積

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$


8.ローレンツ変換

$$ x^{\prime} = \gamma (x - vt), \phantom{0} t^{\prime} = \gamma ( t - \frac{vx}{c^2} ) $$

$$ x^{\prime} = \gamma (x - vt), \phantom{0} t^{\prime} = \gamma ( t - \frac{vx}{c^2} ) $$


9.二項定理

$$ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k $$

$$ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k $$


10.解析関数のコーシー・リーマン方程式

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$


11.正弦関数の定義

$$\sin(\theta) = \frac{\text{対辺}}{\text{斜辺}}$$

$$\sin(\theta) = \frac{\text{対辺}}{\text{斜辺}}$$


12.余弦定理

$$c^2 = a^2 + b^2 - 2ab \cos(C)$$

$$c^2 = a^2 + b^2 - 2ab \cos(C)$$


13.三重角の公式(正弦)

$$\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)$$

$$\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)$$


  • 分数

$$ \frac{x}{y} $$

  • 下線
a long long ago_________________